ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Ashlea V. Colton, Blair P. Bromley
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 1-12
Technical Paper | doi.org/10.13182/NT16-70
Articles are hosted by Taylor and Francis Online.
Thorium, a fertile nuclear fuel that is nearly three times as abundant as uranium, represents a long-term energy source that could complement uranium and eventually replace it. With the expected refurbishment and new construction of pressure tube heavy water reactors (PT-HWRs) within the international community, there is an opportunity to gain experience with thorium-based fuels and to start the transition toward the use of thorium as part of the nuclear fuel cycle.
This paper presents an evaluation of fuel types that could be implemented in the near-term to transition into thorium-based fuels in current PT-HWRs. The near-term fuel consists of small amounts of thorium (in a traditional 37-element fuel bundle that is mostly filled with natural uranium or slightly enriched uranium). In addition, a modified 37-element fuel bundle type comprised of slightly enriched uranium fuel (1.2 wt% 235U/U or less), a thorium central element, and the mass equivalent of 1-cm thorium end pellets was studied. Both lattice physics depletion simulations and full-core time-averaged neutron diffusion simulations were carried out to evaluate the performance and safety characteristics of the different studied full-core configurations.
The results demonstrate that adding small amounts of thorium into the fuel of a 37-element bundle is feasible, through enrichment, without reducing power in the reactor or incurring a severe burnup penalty. The most viable core configuration is a core filled with modified 37-element fuel containing slightly enriched uranium dioxide with 1.2 wt% 235U/U. Even with the addition of 1.2 kg of thorium metal to the bundle, significant gains are achieved, including an increased margin to maximum bundle power limit of 40 kW and a 50% increase in fissile utilization.