ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Akira Shibata, Yoshiaki Kato, Taketoshi Taguchi, Masatoshi Futakawa, Katsuhiro Maekawa
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 89-99
Technical Paper | doi.org/10.13182/NT16-54
Articles are hosted by Taylor and Francis Online.
Zircaloy-4 has been widely used as a nuclear fuel cladding material. However, recently, several European countries have gradually replaced Zircaloy-4 cladding material in pressurized water reactor (PWR) nuclear power plants with a Zr-Nb alloy called M5 and other new zirconium alloys with Nb added that are expected to have relatively longer operating lives. Although improved corrosion resistance of the advanced zirconium alloys was demonstrated in various conditions, the origin of this resistance has not yet been elucidated. In this study, corrosion tests were performed on Zircaloy-4 and M5 under simulated PWR water conditions to explore the origin of the better corrosion resistance of the advanced zirconium alloys. Alloy specimens were exposed to simulated PWR conditions, and the increase in oxide film content was analyzed by weight gain and microscopy observations. Electrochemical impedance spectroscopy (EIS) was performed on Zircaloy-4 and M5 in the pretransition period of oxide film to compare their corrosion properties. The EIS results obtained in this study show that the electrochemical behavior of M5 is significantly different from that of Zircaloy-4 in the early period of the initial stage in the pretransition oxidation process. To explain the result, a multilayer circuit model is assumed. The resistance of the diffusion layer comprising multiple layers restricts the rate of oxidation in the M5 response system. The occurrence of this process caused by multilayered oxide film would contribute to improved corrosion resistance of M5 under PWR water conditions.