ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Akira Shibata, Yoshiaki Kato, Taketoshi Taguchi, Masatoshi Futakawa, Katsuhiro Maekawa
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 89-99
Technical Paper | doi.org/10.13182/NT16-54
Articles are hosted by Taylor and Francis Online.
Zircaloy-4 has been widely used as a nuclear fuel cladding material. However, recently, several European countries have gradually replaced Zircaloy-4 cladding material in pressurized water reactor (PWR) nuclear power plants with a Zr-Nb alloy called M5 and other new zirconium alloys with Nb added that are expected to have relatively longer operating lives. Although improved corrosion resistance of the advanced zirconium alloys was demonstrated in various conditions, the origin of this resistance has not yet been elucidated. In this study, corrosion tests were performed on Zircaloy-4 and M5 under simulated PWR water conditions to explore the origin of the better corrosion resistance of the advanced zirconium alloys. Alloy specimens were exposed to simulated PWR conditions, and the increase in oxide film content was analyzed by weight gain and microscopy observations. Electrochemical impedance spectroscopy (EIS) was performed on Zircaloy-4 and M5 in the pretransition period of oxide film to compare their corrosion properties. The EIS results obtained in this study show that the electrochemical behavior of M5 is significantly different from that of Zircaloy-4 in the early period of the initial stage in the pretransition oxidation process. To explain the result, a multilayer circuit model is assumed. The resistance of the diffusion layer comprising multiple layers restricts the rate of oxidation in the M5 response system. The occurrence of this process caused by multilayered oxide film would contribute to improved corrosion resistance of M5 under PWR water conditions.