ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Jae-Hyuk Eoh, Seyun Kim, Sang-Ji Kim, Seong-O Kim
Nuclear Technology | Volume 160 | Number 2 | November 2007 | Pages 216-232
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3894
Articles are hosted by Taylor and Francis Online.
The KLFR is a pool-type lead-cooled fast reactor, which has a core thermal output of 900 MW(thermal), and a reactor vessel auxiliary cooling system (RVACS) is employed to secure reliable decay heat removal (DHR) during the worst anticipated design-basis condition. Since the RVACS design is based on reliable and economic considerations, a sufficiently large DHR capacity and compact reactor vessel size are desirable. However, these two requirements compete with each other because a sufficient DHR capacity can be achieved by a larger vessel size with a consequential heavy lead coolant weight. An advanced RVACS concept that has a larger capacity with a more compact vessel size was developed. To increase the DHR capacity of the KLFR, which uses natural-air circulation cooling, the feasibility of heat transfer enhancement by introducing new design concepts to essentially reduce the heat transfer resistance of the radial heat transfer elements was investigated. As a result of this work, the parametric analysis results showed that the passive DHR capacity of the KLFR can be substantially increased by up to 24% when compared with the classical RVACS concept, and this feature makes a compact reactor vessel very feasible. With the proposed advanced RVACS concept, one could expect that the heat removal capacity of an RVACS-type passive DHR system will be increased.