ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Jae-Hyuk Eoh, Seyun Kim, Sang-Ji Kim, Seong-O Kim
Nuclear Technology | Volume 160 | Number 2 | November 2007 | Pages 216-232
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3894
Articles are hosted by Taylor and Francis Online.
The KLFR is a pool-type lead-cooled fast reactor, which has a core thermal output of 900 MW(thermal), and a reactor vessel auxiliary cooling system (RVACS) is employed to secure reliable decay heat removal (DHR) during the worst anticipated design-basis condition. Since the RVACS design is based on reliable and economic considerations, a sufficiently large DHR capacity and compact reactor vessel size are desirable. However, these two requirements compete with each other because a sufficient DHR capacity can be achieved by a larger vessel size with a consequential heavy lead coolant weight. An advanced RVACS concept that has a larger capacity with a more compact vessel size was developed. To increase the DHR capacity of the KLFR, which uses natural-air circulation cooling, the feasibility of heat transfer enhancement by introducing new design concepts to essentially reduce the heat transfer resistance of the radial heat transfer elements was investigated. As a result of this work, the parametric analysis results showed that the passive DHR capacity of the KLFR can be substantially increased by up to 24% when compared with the classical RVACS concept, and this feature makes a compact reactor vessel very feasible. With the proposed advanced RVACS concept, one could expect that the heat removal capacity of an RVACS-type passive DHR system will be increased.