ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Balhassn S. M. Ali, Terry Y. P. Yuen, Mohamed Saber
Nuclear Technology | Volume 196 | Number 1 | October 2016 | Pages 130-140
Technical Paper | doi.org/10.13182/NT15-117
Articles are hosted by Taylor and Francis Online.
The high-temperature components in thermal power plants are subject to creep deformation as a result of operating at elevated temperature and high steam pressure. Creep is nonlinear deformation leading to rupture and component failure; therefore, it has to be monitored closely, especially when the high-temperature components approach the last stage of their designed lifetime. This paper presents the design and application of two small specimen types that can be used to assess the severity of creep damage in these components as they age. These specimens can be used to assess the creep strength and remaining lifetime of in-service components. Small material samples can be removed safely from operating component surfaces and then be used to manufacture these small specimens. These specimens can be manufactured and tested easily using pin connection. This paper places emphasis on specimen design and loading for creep testing. Two high-temperature materials (P91 and P92 steels) are used to validate the accuracy of the new testing technique. The creep results obtained from these small creep test specimens are compared with results obtained from corresponding uniaxial creep tests. Very good correlation is found between the two sets of results.