ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
UIUC microreactor fuel qualification methodology gets safety approval
The University of Illinois at Urbana-Champaign Nuclear Plasma and Radiation Engineering (NPRE) Department announced yesterday that the Nuclear Regulatory Commission has approved a fuel qualification methodology topical report for the high-temperature gas-cooled reactor the university wants to construct. The topical report was prepared by Ultra Safe Nuclear and submitted by UIUC to the NRC in March 2024. It describes the fuel that would be used in the microreactor that UIUC plans to host—initially containing uranium enriched to 9.9 percent U-235—and how it would be tested. The NRC issued its approval and a final safety evaluation on April 1.
Robert W. Carlsen, Paul P. H. Wilson
Nuclear Technology | Volume 195 | Number 3 | September 2016 | Pages 288-300
Technical Paper | doi.org/10.13182/NT15-138
Articles are hosted by Taylor and Francis Online.
Because of the diversity of fuel cycle simulator modeling assumptions, direct comparison and benchmarking can be difficult. In 2012 the Organisation for Economic Co-operation and Development completed a benchmark study that is perhaps the most complete published comparison performed. Despite this, various results from the simulators were often significantly different because of inconsistencies in modeling decisions involving reprocessing strategies, refueling behavior, reactor end-of-life handling, etc. This work identifies and quantifies the effects of selected modeling choices that may sometimes be taken for granted in the fuel cycle simulation domain. Four scenarios are compared using combinations of either fleet-based or individually modeled reactors with either monthly or quarterly (3-month) time steps. The scenarios approximate a transition from the current U.S. once-through light water reactor fleet to a full sodium fast reactor fuel cycle. The Cyclus fuel cycle simulator’s plug-in facility capability along with its market-like dynamic material routing allow it to be used as a level playing field for comparing the scenarios. When they are under supply-constraint pressure, the four cases exhibit noticeably different behavior. Fleet-based modeling is more efficient in supply-constrained environments at the expense of losing insight on issues such as realistically suboptimal fuel distribution and challenges in reactor refueling cycle staggering. Finer-grained time steps also enable more efficient material use in supply-constrained environments resulting in much lower standing inventories of separated Pu. Large simulations with fleet-based reactors run much more quickly than their individual reactor counterparts. Gaining a better understanding of how these and other modeling choices affect fuel cycle dynamics will enable making more deliberate decisions with respect to trade-offs such as computational investment versus realism.