ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
John N. Hamawi
Nuclear Technology | Volume 195 | Number 3 | September 2016 | Pages 363-370
Technical Note | doi.org/10.13182/NT16-18
Articles are hosted by Taylor and Francis Online.
Estimates of radiation doses to receptors in the vicinity of nuclear power plants from gaseous effluents are important to ensure that plant operation is in compliance with the as-low-as-reasonably-achievable dose objectives delineated in 10 CFR 50, Appendix I. The U.S. Nuclear Regulatory Commission (NRC) recently issued an Advance Notice of Proposed Rulemaking (ANPR) on the development of a new regulatory basis in support of aligning the NRC regulations governing dose assessments for radioactive effluents with the most recent methodology published by the International Commission on Radiological Protection (ICRP) contained in ICRP Publication 103 (ICRP-103) (2007). The ANPR specifically recommends that the dose conversion factors (DCFs) in Regulatory Guide 1.109 (RG 1.109) be revised as part of any effort to more closely align the NRC’s regulations with the ICRP-103 recommendations. Section C.2 of RG 1.109 provides a sector-average (SA) finite-cloud model for computation of annual doses at off-site receptors from noble gas releases from freestanding tall stacks. One of the limitations of this model is that embedded in the applicable equation is the DCF, and as such, the model is not suitable for implementation of the ANPR (if approved) and the recommended use of stand-alone updated DCFs. This limitation can be circumvented through use of the “gamma atmospheric dispersion factor” in the finite-cloud dose model, referred to as the gamma (χ/Q). A second limitation of the SA finite-cloud model is the dose overestimation at close-in receptors under very stable conditions and elevated plumes, which can be eliminated by using the corresponding finite-cloud gamma (χ/Q) for the plume-centerline (PC) model. Presented are analytical details on the derivation and use of the SA and PC gamma (χ/Q)’s, which are suitable for incorporation of stand-alone updated sets of DCFs based on ICRP-103.