ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Young Su Na, Song-Won Cho, Kwang Soon Ha
Nuclear Technology | Volume 195 | Number 3 | September 2016 | Pages 329-334
Technical Paper | doi.org/10.13182/NT15-160
Articles are hosted by Taylor and Francis Online.
This study evaluated the hydrogen issue in the initial operation of a filtered containment venting system (FCVS). We calculated the volumetric concentration of hydrogen, steam, and air in the postulated FCVS connected with the OPR 1000, as a target nuclear power plant, under a station blackout using the MELCOR computer code (version 1.8.6). A large amount of steam and a flammable mixture generated during a severe accident are immediately released from the containment building to the FCVS when the pressure in the containment building approaches a set value. The constituent ratio of the flammable mixture of hydrogen, steam, and air can change due to the different thermal-hydraulic conditions between those due to a severe accident in the containment building and the initial condition in the FCVS. The volumetric concentration of hydrogen was 6% in the containment building just before the operation of the FCVS. It increased up to 9% in the FCVS vessel during the early operation, and steam condensation occurred simultaneously. The atmospheric condition including steam, hydrogen, and air in the FCVS can enter the combustion zone in the Shapiro diagram.