ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Geethpriya Palaniswaamy, Sudarshan K. Loyalka
Nuclear Technology | Volume 160 | Number 2 | November 2007 | Pages 187-204
Technical Paper | Reactor Safety | doi.org/10.13182/NT160-187
Articles are hosted by Taylor and Francis Online.
Nuclear aerosols formed during nuclear reactor accidents or explosions evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement, and distribution involve the study of various processes such as coagulation, deposition, condensation, evaporation, etc., and are influenced by factors such as particle shape, charge, radioactivity, and spatial inhomogeneity. These many processes and factors make the numerical study of nuclear aerosol evolution computationally very complicated. The Direct Simulation Monte Carlo (DSMC) technique was developed to elucidate the role of various phenomena that influence the evolution of nuclear aerosols. This will allow, then, for an assessment of the limitations of other methods used at present. Coagulation, deposition, and source reinforcement processes for a multicomponent, aerosol dynamics problem have been explored. As a simple verification, the DSMC results were compared with analytical results for a single-component aerosol dynamics problem with coagulation and deposition processes. In addition, the DSMC results were compared against those obtained using the sectional method for several multicomponent test problems with the same component densities. It is clear from the present results that the assumption of a single mean density is not appropriate in such problems because of the complicated effect of component densities on the aerosol processes.