ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Augustus Merwin, Dev Chidambaram
Nuclear Technology | Volume 195 | Number 2 | August 2016 | Pages 204-212
Technical Paper | doi.org/10.13182/NT15-126
Articles are hosted by Taylor and Francis Online.
INCONEL alloy 625® (I625) was exposed to molten LiCl-Li2O-Li to evaluate the material reliability for applications involving the electrolytic reduction of uranium oxide. Samples of I625 were exposed to solutions of LiCl with 1 and 2 wt% Li2O, containing either 0, 0.5, or 1 wt% metallic lithium for 20 h at 650°C. Additional experiments exposed samples to LiCl saturated with Li2O to investigate the mechanism of interaction between materials and the melt. Postexposure sample surface morphology and chemistry were studied using scanning electron microscopy and X-ray photoelectron spectroscopy. Additionally, inductively coupled plasma–optical emission spectroscopy was used to analyze the melt to determine the alloy constituents that leached out of the coupon during the exposure. The inclusion of 0.5 wt% metallic lithium in the molten solution was found to increase the stability of chromium-rich surface films and suppress the dissolution rate of alloying elements, compared to melts of LiCl-Li2O containing no metallic Li. Alternatively, samples exposed to solutions containing 1 wt% metallic lithium did not form surface films and demonstrated evidence of chromium depletion. The degradation of materials exposed to solutions containing 1 wt% metallic lithium was observed to be different from samples exposed to solutions saturated with lithium oxide, demonstrating a chemical effect other than, or in addition to, salt basicity.