ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Gordon Kohse, David Carpenter, Yi Yuan, Pavel Hejzlar, Mujid Kazimi
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 150-168
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3889
Articles are hosted by Taylor and Francis Online.
This paper describes an irradiation test of high-power-density internally and externally cooled annular fuel samples in the 5-MW Massachusetts Institute of Technology (MIT) research reactor MITR-II. The design of the irradiation facility is briefly reviewed, with an emphasis on the thermal-hydraulic behavior of the irradiation capsules. The irradiation test is described, including the thermal history of the two irradiated samples. A discussion of the observed asymmetrical temperature profiles is provided. Results of preliminary postirradiation examination consisting of collimated gamma scans of the irradiation capsules to confirm burnup estimates and estimate fission gas release (FGR) are also presented. It is concluded that the vibropacked fuel samples' FGR is below 1%, and that is within the predictable range by a specially equipped FRAPCON model.