ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Michael Nishimura, Yu Liu, Liqian Li, Karen Colins
Nuclear Technology | Volume 195 | Number 2 | August 2016 | Pages 169-180
Technical Paper | doi.org/10.13182/NT15-159
Articles are hosted by Taylor and Francis Online.
With the advancement of computer and communication technologies, wireless sensor networks (WSNs) are increasingly used in nuclear and space applications, both of which may require operation in a high-intensity radiation environment. Gamma rays’ damaging mechanisms in semiconductor devices are described as, and specifically linked to, semiconductor property changes in detectors, transistors, and integrated circuits. Radiation damage is cumulative and can result in the premature failure of WSN nodes. Failed WSN nodes decrease the quality of service of the entire WSN and then delay immediate response to severe accidents. This paper focuses on evaluating the performance of WSN routing protocols in a gamma-ray radiation environment. The probability density function of a Weibull distribution was used to model failures of individual nodes in simulated WSNs. The distribution parameters are based on results of radiation damage tests performed on semiconductor devices in the Gamma-220 facility (60Co source) at the Canadian Nuclear Laboratories. Simulation of the routing protocols [LEACH (Low Energy Adaptive Clustering Hierarchy), LEACH-C (LEACH-Centralized), Stat-Clus (Static Clustering), MTE (Minimum Transmission Energy), and PEGASIS (Power-Efficient Gathering in Sensor Information Systems)] through NS2 (Network Simulator 2) and the resulting performance analyses could provide useful design insights and considerations for nuclear and space applications. The performance of WSN routing protocols is evaluated for the first time in a gamma-ray radiation environment for nuclear and space applications.