ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Michael Nishimura, Yu Liu, Liqian Li, Karen Colins
Nuclear Technology | Volume 195 | Number 2 | August 2016 | Pages 169-180
Technical Paper | doi.org/10.13182/NT15-159
Articles are hosted by Taylor and Francis Online.
With the advancement of computer and communication technologies, wireless sensor networks (WSNs) are increasingly used in nuclear and space applications, both of which may require operation in a high-intensity radiation environment. Gamma rays’ damaging mechanisms in semiconductor devices are described as, and specifically linked to, semiconductor property changes in detectors, transistors, and integrated circuits. Radiation damage is cumulative and can result in the premature failure of WSN nodes. Failed WSN nodes decrease the quality of service of the entire WSN and then delay immediate response to severe accidents. This paper focuses on evaluating the performance of WSN routing protocols in a gamma-ray radiation environment. The probability density function of a Weibull distribution was used to model failures of individual nodes in simulated WSNs. The distribution parameters are based on results of radiation damage tests performed on semiconductor devices in the Gamma-220 facility (60Co source) at the Canadian Nuclear Laboratories. Simulation of the routing protocols [LEACH (Low Energy Adaptive Clustering Hierarchy), LEACH-C (LEACH-Centralized), Stat-Clus (Static Clustering), MTE (Minimum Transmission Energy), and PEGASIS (Power-Efficient Gathering in Sensor Information Systems)] through NS2 (Network Simulator 2) and the resulting performance analyses could provide useful design insights and considerations for nuclear and space applications. The performance of WSN routing protocols is evaluated for the first time in a gamma-ray radiation environment for nuclear and space applications.