ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Edward Lahoda, Herbert Feinroth, Marcelo Salvatore, Diego O. Russo, Holly Hamilton
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 100-111
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3886
Articles are hosted by Taylor and Francis Online.
This paper summarizes the work performed to examine the feasibility of manufacturing internally and externally cooled annular fuel for high-power-density pressurized water reactors (PWRs) and to demonstrate commercially viable manufacturing processes at bench scale. Five different manufacturing processes were considered, and two were selected for further development and demonstration. These are (a) the traditional press and sinter technique currently used in solid pellet manufacture and (b) the vibration compaction (VIPAC) technique, in which granulated and sintered urania fuel particles are vibration compacted into a prefabricated annular space. Two separate pellet manufacturing trials were undertaken, one at the Westinghouse, Columbia, South Carolina, plant and one at INVAP facilities in Argentina. At the INVAP plant the pellets were loaded between small and large cladding tubes and seal welded to demonstrate the entire manufacturing steps. At Atomic Energy of Canada Limited, the VIPAC approach was used to perform short test segments as well as 1219-mm (4-ft)-long fuel rods. The overall conclusion of the work is that the press and sinter technique can produce annular pellets and annular fuel elements that meet the density and dimensional needs of the annular fuel design and hence is a viable approach toward fabrication of such high-power-density fuel. This process is most like that used in current commercial fuel production and hence would pose the least disruption in any future annular fuel use in commercial PWRs. This work also demonstrated that the VIPAC approach is capable of making high-quality annular fuel elements, but not with the fuel density required for adequate performance. Addition of uranium metal powder to the vibrated compact was found to be necessary to achieve the required uranium fuel loading.