ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Edward Lahoda, Herbert Feinroth, Marcelo Salvatore, Diego O. Russo, Holly Hamilton
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 100-111
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3886
Articles are hosted by Taylor and Francis Online.
This paper summarizes the work performed to examine the feasibility of manufacturing internally and externally cooled annular fuel for high-power-density pressurized water reactors (PWRs) and to demonstrate commercially viable manufacturing processes at bench scale. Five different manufacturing processes were considered, and two were selected for further development and demonstration. These are (a) the traditional press and sinter technique currently used in solid pellet manufacture and (b) the vibration compaction (VIPAC) technique, in which granulated and sintered urania fuel particles are vibration compacted into a prefabricated annular space. Two separate pellet manufacturing trials were undertaken, one at the Westinghouse, Columbia, South Carolina, plant and one at INVAP facilities in Argentina. At the INVAP plant the pellets were loaded between small and large cladding tubes and seal welded to demonstrate the entire manufacturing steps. At Atomic Energy of Canada Limited, the VIPAC approach was used to perform short test segments as well as 1219-mm (4-ft)-long fuel rods. The overall conclusion of the work is that the press and sinter technique can produce annular pellets and annular fuel elements that meet the density and dimensional needs of the annular fuel design and hence is a viable approach toward fabrication of such high-power-density fuel. This process is most like that used in current commercial fuel production and hence would pose the least disruption in any future annular fuel use in commercial PWRs. This work also demonstrated that the VIPAC approach is capable of making high-quality annular fuel elements, but not with the fuel density required for adequate performance. Addition of uranium metal powder to the vibrated compact was found to be necessary to achieve the required uranium fuel loading.