ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Zhiwen Xu, Yasuyuki Otsuka, Pavel Hejzlar, Mujid S. Kazimi, Michael J. Driscoll
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 63-79
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3884
Articles are hosted by Taylor and Francis Online.
Compared to the traditional solid fuel pin, annular fuel with internal as well as external coolant flow increases the cooling surface by ~50%, which allows a higher core power density. However, operating at high power density introduces challenges in the core physics design of burnable poison to suit the desired fuel cycle length. In this paper, both the fuel cycle length and the number of reload fresh fuel assemblies are assumed to remain the same as current industry practice (18-month cycle and three-batch fuel management), which in turn requires >5 wt% fuel enrichment for the 150% power core. Alternative fuel cycles are discussed. Pressurized water reactor cores with annular fuel are designed using the state-of-the-art Studsvik Scandpower core modeling package including CASMO-4, TABLES-3, and SIMULATE-3. Two power levels are considered for the core design based on annular fuel: 100 and 150% of the rated power. The reactivity feedback effects of the annular fuel are shown to be comparable to those of solid fuel. The 150% power core with annular fuel shows considerable resemblance to traditional high-energy cores.