ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Zhiwen Xu, Yasuyuki Otsuka, Pavel Hejzlar, Mujid S. Kazimi, Michael J. Driscoll
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 63-79
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3884
Articles are hosted by Taylor and Francis Online.
Compared to the traditional solid fuel pin, annular fuel with internal as well as external coolant flow increases the cooling surface by ~50%, which allows a higher core power density. However, operating at high power density introduces challenges in the core physics design of burnable poison to suit the desired fuel cycle length. In this paper, both the fuel cycle length and the number of reload fresh fuel assemblies are assumed to remain the same as current industry practice (18-month cycle and three-batch fuel management), which in turn requires >5 wt% fuel enrichment for the 150% power core. Alternative fuel cycles are discussed. Pressurized water reactor cores with annular fuel are designed using the state-of-the-art Studsvik Scandpower core modeling package including CASMO-4, TABLES-3, and SIMULATE-3. Two power levels are considered for the core design based on annular fuel: 100 and 150% of the rated power. The reactivity feedback effects of the annular fuel are shown to be comparable to those of solid fuel. The 150% power core with annular fuel shows considerable resemblance to traditional high-energy cores.