ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dandong Feng, Paolo Morra, Ramu Sundaram, Won-Jae Lee, Pradip Saha, Pavel Hejzlar, Mujid S. Kazimi
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 45-62
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3883
Articles are hosted by Taylor and Francis Online.
This paper assesses the performance of internally and externally cooled annular fuel in a four-loop pressurized water reactor during a variety of transients and accidents, namely, the loss of flow accident (LOFA), main steam line break (MSLB), large break loss of coolant accident (LBLOCA), and rod ejection accident (REA). The RELAP5 code was the primary vehicle for these analyses, although the VIPRE code was also used to calculate the minimum departure from nucleate boiling ratio (MDNBR) for LOFA and MSLB transients based on the RELAP5 results. It has been found that the MDNBR for the annular fuel at 150% power was higher than the MDNBR value for the reference solid fuel at 100% power for LOFA and MSLB. For LBLOCA analysis, the RELAP5-3D code was applied twice since the code has a constraint on the reflood model, which can be applied to only one cooling surface (either the inner channel or the outer channel). The analysis, with the reflood model applied to the outer channel, showed that using the standard size (100%) accumulator but with an increased (150%) safety injection flow rate, the peak cladding temperature (PCT) for the annular fuel at 150% power would be ~1200 K (927°C). This is ~150°C higher than the PCT for the solid fuel at 100% power but 277°C lower than the regulatory limit of 1204°C. When the reflood model is applied to the inner channel, the PCT would be limited to 1100 K (827°C), which is only 50°C higher than the PCT for the solid fuel at 100% power and 377°C lower than the regulatory limit of 1204°C. The calculated fuel temperatures and enthalpies during the REA have been found to be much smaller for the annular fuel, even at 150% power, compared to that for the solid fuel at 100% power. These analyses indicate that the new internally and externally cooled annular fuel can accommodate 50% power uprate in a PWR and still maintain adequate safety margins for a variety of transients and accidents including LOFA, MSLB, LBLOCA, and REA.