ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dandong Feng, Pavel Hejzlar, Mujid S. Kazimi
Nuclear Technology | Volume 160 | Number 1 | October 2007 | Pages 16-44
Technical Paper | Annular Fuel | doi.org/10.13182/NT07-A3882
Articles are hosted by Taylor and Francis Online.
This paper presents steady-state thermal-hydraulic analyses of various lattices of externally and internally cooled annular pressurized water reactor (PWR) fuel to identify the geometry that allows the largest possible power density while maintaining or increasing the minimum departure from nucleate boiling ratio (MDNBR) margin in current PWRs. Differences from the typical solid rod fuel are identified, and tools for the analysis are established. These involve an in-house code developed for this purpose and an adaptation of the VIPRE-01 whole-core model using a built-in heated tube option. A 13 × 13 square array that maintains the same assembly dimensions as the current 17 × 17 fuel assembly and keeps the same fuel-to-moderator ratio was identified to achieve the best performance and the largest MDNBR margin. It is demonstrated that with a proportional increase of the core flow rate, the annular fuel allows for an up to 50% power uprate at the same MDNBR margin as in current solid PWR fuel, or for a smaller uprate with larger MDNBR margins. The same uprate was found to be possible if annular fuel is used with a hexagonal lattice, such as in VVER plants. Even at this large power rating, the peak fuel temperature is smaller by hundreds of degrees centigrade than for the solid fuel. Analyses have also shown that the annular fuel is stable against both a power excursion and density wave oscillations and has only small sensitivity to oxide layer growth and manufacturing tolerances. Gap conductance asymmetry (between the inner and outer gaps) was identified as the key issue that will limit the design because gap heat transfer resistance affects the MNDBR, unlike for the solid fuel. The annular fuel MNDBR was also found to be more sensitive to variations in core operating parameters than solid fuel, but this is more than compensated for by a significantly larger MDNBR margin during normal operation.