ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Gabriel Ghita, Glenn Sjoden, James Baciak
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 319-331
Technical Paper | Radiation Protection | doi.org/10.13182/NT07-A3879
Articles are hosted by Taylor and Francis Online.
Plutonium-beryllium (Pu-Be) sources can be used as didactic source materials for special nuclear materials (SNM) detection evaluation protocols. Since limited specific information exists for many of the Pu-Be sources currently in service, before using a Pu-Be source for field studies, the leakage radiation of neutrons and gamma rays from the source must be fully assessed. Most Pu-Be sources have an outer stainless steel jacket and an inner tantalum jacket, with the Pu-Be homogeneously distributed throughout the inner jacket. To fully characterize the net leakage terms from our Pu-Be source, we applied three-dimensional radiation transport computations, including Monte Carlo (MCNP5) and deterministic (PENTRAN) methodologies. The transport model for our Pu-Be capsule is based on limited schematic and technical data. To define the decay history and resulting source spectrum, exothermic [alpha-neutron (,n)] reactions are modeled using OrigenArp in the SCALE5 package. For transport modeling purposes, the intermetallic Pu-Be compound was treated as an intimate mixture of plutonium and beryllium, based on the manufacturer's mass specifications. The net capsule leakage was derived using transport computations, and an iterative estimation of plutonium age was performed. Computational results for net leakage are in agreement with the manufacturer's specification of neutron yield and dose rate. We also combined computational results with experimental measurement data to fully validate our computational methods. We have successfully achieved agreement between computational and experimental data for our Pu-Be source leakage, and we are using the results at the Florida Institute of Nuclear Detection and Security to evaluate a prototype SNM neutron detector array for parcel screening and national security applications.