ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Wolfgang Wulff
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 292-309
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3877
Articles are hosted by Taylor and Francis Online.
The paper presents integral methods for simulating two-phase flow transients in complex cooling systems, such as those in nuclear power plants. The methods are designed to simplify presently prevailing thermohydraulics simulation methods without a loss in simulation fidelity. The paper describes the inherent, but unnecessary, complexity of currently used simulation models, explains their inherent shortcomings, and foretells the impact of current code development trends on future capabilities to resolve safety issues in light of growing code complexities and inflexibility. The purpose of the paper is to present simpler alternatives.Integral methods described in the paper facilitate flexibility via computer-automated modularity and simplicity. They provide transparency through analytical methods. Integral methods replace partial by ordinary differential equations and thereby simplify the mathematical model formulation and achieve numerical integration with minimal numerical damping. The models connect important physical characteristic response times with the time step for numerical integration. The mixture model of nonhomogeneous, nonequilibrium two-phase flow, the integral of the volumetric flux divergence equation, and the integrals of the system of coupled loop momentum balances for interconnected loops in complex thermohydraulic systems play central modeling roles. A new and compact formulation of these equations facilitates a computerized system assembly of component models, each one being judiciously selected from a model library to impose the minimum necessary complexity. The method of assembly is based on linear algebra and accommodates any combination of phasic flow directions anywhere in the hydraulic system and at any time.