ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Doonyapong Wongsawaeng, Donald Olander
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 279-291
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3876
Articles are hosted by Taylor and Francis Online.
A liquid metal (LM) consisting of one-third weight fraction each of Pb, Sn, and Bi has been investigated as the bonding substance in place of He in the pellet-cladding gap of light water reactor fuel elements. The LM bond eliminates the large T over the preclosure gap that is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond, which lead to local fuel hot spots. Voids were eliminated during fabrication by first evacuating the rod loaded with solid alloy and a fuel stack, melting the alloy, pushing down the fuel stack to drive the LM into the gap, and finally applying at least 5 atm He overpressure. Fabrication of a 4-m-long full-scale fuel rod using this technique was successfully demonstrated. A destructive examination revealed numerous breaks in the frozen alloy bond, but all of these appeared to result from handling the fuel rod. Application to commercial fuel manufacturing should require only minor modifications to existing fabrication lines. The most suitable nondestructive examination technique utilizes a collimated X-ray beam to probe edge-on the region between the pellet surface and the cladding inside diameter.