ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Doonyapong Wongsawaeng, Donald Olander
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 279-291
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3876
Articles are hosted by Taylor and Francis Online.
A liquid metal (LM) consisting of one-third weight fraction each of Pb, Sn, and Bi has been investigated as the bonding substance in place of He in the pellet-cladding gap of light water reactor fuel elements. The LM bond eliminates the large T over the preclosure gap that is characteristic of helium-bonded fuel elements. Because the LM does not wet either UO2 or Zircaloy, simply loading fuel pellets into a cladding tube containing LM at atmospheric pressure leaves unfilled regions (voids) in the bond, which lead to local fuel hot spots. Voids were eliminated during fabrication by first evacuating the rod loaded with solid alloy and a fuel stack, melting the alloy, pushing down the fuel stack to drive the LM into the gap, and finally applying at least 5 atm He overpressure. Fabrication of a 4-m-long full-scale fuel rod using this technique was successfully demonstrated. A destructive examination revealed numerous breaks in the frozen alloy bond, but all of these appeared to result from handling the fuel rod. Application to commercial fuel manufacturing should require only minor modifications to existing fabrication lines. The most suitable nondestructive examination technique utilizes a collimated X-ray beam to probe edge-on the region between the pellet surface and the cladding inside diameter.