ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Chi-Szu Lee, Chaung Lin
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 256-266
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3874
Articles are hosted by Taylor and Francis Online.
A method that includes a genetic algorithm (GA), principal component analysis (PCA), and an artificial neural network (ANN) is adopted in the search for the power ascension path of a boiling water reactor that used to rely solely on an operator's experiences. The power ascension path is formulated as an optimization problem with thermal limits, e.g., minimum critical power ratio, maximum linear heat generation rate, and maximum average planar linear heat generation rate, and with the stability requirement serving as a constraint. The Simulate-3 code is used to calculate the reactor core status, while the optimization problem is solved through the use of the GA. Since the search domain of the GA is relatively large, the ANN, which models the power ascension path, is developed in order to quickly select the candidate solutions for further Simulate-3 calculations, permitting the algorithm to converge effectively. Meanwhile, PCA is used to reduce the ANN input vector's dimension, which improves the ANN training efficiency and pattern recognition capability. The results show that this method efficiently obtains the proper power ascension path required for meeting all constraints at different fuel exposure levels.