ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Juris Tiliks, Gunta Kizane, Aigars Vitins, Elina Kolodinska, Elisa Rabaglino
Nuclear Technology | Volume 159 | Number 3 | September 2007 | Pages 245-249
Technical Paper | Beryllium Technology | doi.org/10.13182/NT07-A3872
Articles are hosted by Taylor and Francis Online.
The effects of temperature, magnetic field (MF), and ionizing radiation on the release of tritium from the Be pebbles irradiated in the BERYLLIUM experiment in 1994 in Petten, The Netherlands (irradiation neutron fluence 1.24 × 1025 m-2, irradiation temperature 780 K, and 3H content 7 appm) were investigated in this study. Simultaneous action of these factors corresponds to the real operating conditions of the blanket of a fusion reactor. The total amount of tritium in a separate pebble, the chemical forms of localized tritium (T0, T2, and T+), and the tritium distribution in the pebble volume were determined by a lyomethod (dissolution). Thermoannealing experiments were performed at a constant temperature of 1123 K for 2 h under the following conditions: separately both in MF (1.7 T) and under fast electron radiation (E = 5 MeV; P = 14 MGyh-1) as well as under the action of all three factors. Tritium in the Be pebbles is localized for the most part as T2 (85 to 94%). The abundances of T+ (4 to 5%) and T0 (5 to 10%) are little. The tritium distribution in a pebble is not uniform; most of the tritium is localized in the inner part of a pebble. An MF of 1.7 T decreases slightly the fractional release of tritium under the given conditions of thermoannealing (from 30 to 25%), the fast electron radiation increases it (from 30 to 40%), but the simultaneous action of the MF and radiation increases it (from 30 to 54%). The effects observed are explained that the MF and radiation affect the concentration of main diffusing particles T0 in a beryllium matrix.