ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Uranium spot price closes out 2024 at $72.63/lb
The uranium market closed out 2024 with a spot price of $72.63 per pound and a long-term price of $80.50 per pound, according to global uranium provider Cameco.
Tunc Aldemir, Don W. Miller, Michael Stovsky, Jason Kirschenbaum, Paolo Bucci, L. Anthony Mangan, Audeen Fentiman, Steven A. Arndt
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 167-191
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT07-A3863
Articles are hosted by Taylor and Francis Online.
Nuclear power plants are in the process of replacing the existing analog instrumentation and control (I&C) systems with digital technology. Digital systems distinguish themselves from other control and instrumentation systems mainly due to the presence of active software/firmware as well as hardware. The U.S. Nuclear Regulatory Commission policy statement on the use of probabilistic risk assessment (PRA) methods in nuclear regulatory activities encourages licensees to use PRA and associated analyses to support the licensing applications to the extent supported by the state-of-the-art and data. Before digital system reviews can be performed in a risk-informed manner, PRAs will need the capability to model digital I&C systems. The available methodologies for the reliability and risk modeling of digital I&C systems are reviewed with respect to their capability to account for the features of the digital I&C systems relevant to digital reactor protection and control systems, as well as the integrability of the resulting model into an existing PRA. It is concluded that the methodologies that rank as the top two with most positive features and least negative or uncertain features (using subjective criteria based on reported experience) are the dynamic flowgraph methodology and the Markov methodology combined with the cell-to-cell mapping technique, each with different advantages and limitations.