ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Bo Wook Rhee, Hangbok Choi, Joo Hwan Park, Kyung Myung Chae, Hye Jeong Yun
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 158-166
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT07-A3862
Articles are hosted by Taylor and Francis Online.
A three-dimensional (3-D) computational fluid dynamics (CFD) model has been developed to analyze the liquid poison injection phenomenon of shutdown system 2 (SDS-2) of a Canada deuterium uranium (CANDU) reactor. Because the SDS-2 injects highly pressurized liquid poison into the moderator in a very short time, it is a major safety priority to confirm the effectiveness of the SDS-2 as one of the shutdown systems. In general, it is difficult to directly measure the velocity and concentration of the poison jet during an injection because of the complex nature of the injection system and the process. Therefore, a series of investigations has been performed to develop a CFD model for liquid poison injection phenomenon with limited validations. In this study, the validation of the existing CFD model for the poison injection phenomenon of the CANDU SDS-2 is extended to be applicable to a CANDU-6 reactor as well as a larger CANDU reactor. The analyses showed that the poison jet growth for those experiments simulated by the 3-D CFD model agrees reasonably with the experimental results. Therefore, it is concluded that the proposed 3-D CFD model can be used to assess the effectiveness of a liquid poison injection in compliance with the intended functional design requirements of the CANDU SDS-2.