ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yong Hoon Jeong, Mujid S. Kazimi
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 147-157
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3861
Articles are hosted by Taylor and Francis Online.
The hybrid sulfur cycle (often called the Westinghouse cycle) for decomposing water into hydrogen and oxygen has two steps. The sulfuric acid is decomposed into steam and sulfur trioxide, which is further decomposed into sulfur dioxide and oxygen at high temperature (~1100 K). Hydrogen is produced by electrolysis of a sulfur dioxide and water mixture at low temperature, which also results in the formation of oxygen and sulfuric acid.In this study, separation of decomposed products and internal heat recuperation are examined, and ways to optimize the energy efficiency of the hybrid cycle are explored by varying the electrolyzer acid concentration, decomposer acid concentration, pressure and temperature of the decomposer, and the internal heat recuperation. The analysis is based on currently available experimental data for the electrode potential.A cycle efficiency of 45.3% [lower heating value (LHV)] appears to be achievable at 1100 K (10 bar, 1100 K, and 60 mol% of H2SO4 for the decomposer, 60 wt% of H2SO4 for the electrolyzer). For a maximum temperature of 1200 K, 50.5% (LHV) appears to be the achievable cycle efficiency (10 bar, 1200 K, and 60 mol% of H2SO4 for the decomposer, 60 wt% of H2SO4 for the electrolyzer). Operation under elevated pressures (70 bar or higher) results in loss of cycle efficiencies due to lower yield of the SO2 in the decomposer but minimizes equipment size and possibly capital cost. However, the loss in efficiency as pressure increases is not large at high temperature (1200 K) compared to that at low temperatures (1000 to 1100 K). Therefore, high-pressure operation for minimizing capital investment would be favored only if the high temperature can be accommodated. The major factors that can affect the cycle efficiency are reducing the electrode overpotential and having structural materials that can accommodate operation at high temperature and high acid concentration.