ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yong Hoon Jeong, Mujid S. Kazimi
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 147-157
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3861
Articles are hosted by Taylor and Francis Online.
The hybrid sulfur cycle (often called the Westinghouse cycle) for decomposing water into hydrogen and oxygen has two steps. The sulfuric acid is decomposed into steam and sulfur trioxide, which is further decomposed into sulfur dioxide and oxygen at high temperature (~1100 K). Hydrogen is produced by electrolysis of a sulfur dioxide and water mixture at low temperature, which also results in the formation of oxygen and sulfuric acid.In this study, separation of decomposed products and internal heat recuperation are examined, and ways to optimize the energy efficiency of the hybrid cycle are explored by varying the electrolyzer acid concentration, decomposer acid concentration, pressure and temperature of the decomposer, and the internal heat recuperation. The analysis is based on currently available experimental data for the electrode potential.A cycle efficiency of 45.3% [lower heating value (LHV)] appears to be achievable at 1100 K (10 bar, 1100 K, and 60 mol% of H2SO4 for the decomposer, 60 wt% of H2SO4 for the electrolyzer). For a maximum temperature of 1200 K, 50.5% (LHV) appears to be the achievable cycle efficiency (10 bar, 1200 K, and 60 mol% of H2SO4 for the decomposer, 60 wt% of H2SO4 for the electrolyzer). Operation under elevated pressures (70 bar or higher) results in loss of cycle efficiencies due to lower yield of the SO2 in the decomposer but minimizes equipment size and possibly capital cost. However, the loss in efficiency as pressure increases is not large at high temperature (1200 K) compared to that at low temperatures (1000 to 1100 K). Therefore, high-pressure operation for minimizing capital investment would be favored only if the high temperature can be accommodated. The major factors that can affect the cycle efficiency are reducing the electrode overpotential and having structural materials that can accommodate operation at high temperature and high acid concentration.