ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Robert E. Einziger, Carl Beyer
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 134-146
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT07-A3860
Articles are hosted by Taylor and Francis Online.
Current risk assessments of spent fuel in storage and transportation casks use the properties of light water reactor fuel below 45 GWd/t U. Fuel is being driven to higher burnups that may influence the source term in cask accidents. To achieve these burnups the manufacturers are introducing new assembly designs and cladding alloys. As a result, at the higher burnups (50 GWd/t U) some of the characteristics of the fuel pellets, cladding, and assembly design used in the safety analysis have changed. The fuel pellet has developed a fine-grained, Pu-rich rim zone on its exterior surface. The source term may increase by up to three orders of magnitude over that expected from the particulate size distribution based on the fracture of the body of the pellets. The actual increase will depend on the fracture characteristics of the rim and number of fracture sites in the cladding. The cladding may acquire hydrogen contents up to 700 parts per million by weight during the increased exposure. Embrittlement of the cladding with subsequent loss of ductility may occur, especially if there is hydride reorientation. As a result, there may be a greater propensity for fracture of the rods upon impact, with subsequent release of fuel particulate and gas. Significantly improved source terms can be developed if additional data on fuel rim fracture as a function of impact energy, the dependence of cladding ductility for Zircaloy and the newer cladding alloys as a function of hydride reorientation, and release characteristics for fractured rods are obtained. Chalk River unidentified deposit spallation characteristics only make a significant contribution to the source term if the rods do not fracture in the accident or if a fire-only accident occurs.