ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
W. F. G. van Rooijen, J. L. Kloosterman, T. H. J. J. van der Hagen, H. van Dam
Nuclear Technology | Volume 159 | Number 2 | August 2007 | Pages 119-133
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3859
Articles are hosted by Taylor and Francis Online.
In this paper passive reactivity control devices for a Generation IV gas-cooled fast reactor (GCFR) are discussed. The proposed devices use liquid 6Li as absorber. The device is triggered by a freeze seal, and upon activation the 6Li is irreversibly introduced into the core region by pressure differences. The device is dubbed the lithium injection module (LIM). Transient thermohydraulic calculations were done using the CATHARE2 code on a simplified thermohydraulic model of GFR600, a 600-MW(thermal) GCFR investigated in the scope of the European GCFR-STREP. The thermohydraulic model uses an accurate model of the ceramic fuel plates and includes natural convection decay heat removal circuits. To properly account for power production during the transient, a synthetic decay power curve was made based on the ANSI/ANS-5.1-1994 law. Loss-of-flow and control rod withdrawal/ejection transients are presented. Neutronic calculations show that the LIMs have a low reactivity worth between -2.1 and -1.5 $. In spite of their low worth, the LIMs are capable of keeping the reactor power bounded during all calculated transients. Shutdown is not always achieved, depending on the kind of transient under consideration. For pressurized loss of flow, recriticality due to Doppler feedback may become problematic in the natural-circulation phase. For rapid control rod ejections, the resulting very fast power transients cause concern for material degradation. One LIM would be enough to control reactor power, but redundancy may call for more than one LIM in the core.