ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Yong-Qian Shi, Pu Xia, Zhang-Lin Luo, Zhi-Xiang Zhao, Dazhao Ding, Yi-Guo Li, Qin-Fu Zhu, Hai-Hong Xia, Ji-Gen Li, Wei Zhang, Jian Cao, Yan-Hui Quan, Huang-Da Luo, Xiaofei Wu
Nuclear Technology | Volume 159 | Number 1 | July 2007 | Pages 106-118
Technical Paper | Accelerators | doi.org/10.13182/NT07-A3858
Articles are hosted by Taylor and Francis Online.
The paper presents the design objectives and structure of China's accelerator-driven subcritical system subcritical assembly Venus-1. The core of Venus-1 is a coupled core with a fast neutron zone and a thermal neutron zone. The fast neutron zone is at the center of the core and is formed by natural uranium fuel. A fast neutron spectrum field can be produced in the fast neutron zone and used for transmutation. The thermal neutron zone surrounds the fast neutron zone and is formed by low-enriched uranium fuel; it is a fission zone. Venus-1 is driven by an Am-Be or other steady neutron source (252Cf, D-D reaction or D-T reaction) to research the effect of an external neutron source with different energies on it or is driven by a D-T pulsed neutron source through the China Institute of Atomic Energy pulsed neutron generator to research the dynamic characteristic. On July 18, 2005, the first fuel element was loaded into the Venus-1 subcritical assembly, and some preliminary experiments on subcritical and neutron distribution have been performed. The final load has been determined by preliminary experiments on Venus-1. The relative neutron importance of the external source, the relative distribution of the thermal neutron flux in the fast neutron zone, and the variation of the neutron count with the addition of natural uranium fuel also have been determined by preliminary experiments on Venus-1.