ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Michael V. Frank, William E. Kastenberg
Nuclear Technology | Volume 159 | Number 1 | July 2007 | Pages 25-38
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3854
Articles are hosted by Taylor and Francis Online.
A risk-management framework for space mission launches of nuclear reactors is presented in this paper. The framework is based on a set of risk-based safety goals and relies on decision-theoretic principles that advance system design from concept through operation. Because time-dependent behavior is inherent in space missions, a quasi-dynamic probabilistic risk assessment framework is described. We illustrate a use of the framework with a risk management example.A rationale for, and a trial set of, qualitative safety goals and quantitative design objectives for launching space nuclear power plants are presented. The rationale is based on background risks to the general public, on accident risks to the population in the area of the launch site and on other large-consequence single-event catastrophes. Guidance is also obtained from the safety goals developed by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and the Federal Aviation Administration. The quantitative design objectives developed and presented are also compared to the calculated risks of previous launches with radioisotope thermal-electric generators such as for the Galileo, Ulysses, and Cassini missions.