ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Michael V. Frank, William E. Kastenberg
Nuclear Technology | Volume 159 | Number 1 | July 2007 | Pages 25-38
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3854
Articles are hosted by Taylor and Francis Online.
A risk-management framework for space mission launches of nuclear reactors is presented in this paper. The framework is based on a set of risk-based safety goals and relies on decision-theoretic principles that advance system design from concept through operation. Because time-dependent behavior is inherent in space missions, a quasi-dynamic probabilistic risk assessment framework is described. We illustrate a use of the framework with a risk management example.A rationale for, and a trial set of, qualitative safety goals and quantitative design objectives for launching space nuclear power plants are presented. The rationale is based on background risks to the general public, on accident risks to the population in the area of the launch site and on other large-consequence single-event catastrophes. Guidance is also obtained from the safety goals developed by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and the Federal Aviation Administration. The quantitative design objectives developed and presented are also compared to the calculated risks of previous launches with radioisotope thermal-electric generators such as for the Galileo, Ulysses, and Cassini missions.