ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Michael V. Frank, William E. Kastenberg
Nuclear Technology | Volume 159 | Number 1 | July 2007 | Pages 25-38
Technical Paper | Reactor Safety | doi.org/10.13182/NT07-A3854
Articles are hosted by Taylor and Francis Online.
A risk-management framework for space mission launches of nuclear reactors is presented in this paper. The framework is based on a set of risk-based safety goals and relies on decision-theoretic principles that advance system design from concept through operation. Because time-dependent behavior is inherent in space missions, a quasi-dynamic probabilistic risk assessment framework is described. We illustrate a use of the framework with a risk management example.A rationale for, and a trial set of, qualitative safety goals and quantitative design objectives for launching space nuclear power plants are presented. The rationale is based on background risks to the general public, on accident risks to the population in the area of the launch site and on other large-consequence single-event catastrophes. Guidance is also obtained from the safety goals developed by the U.S. Nuclear Regulatory Commission, the U.S. Department of Energy, and the Federal Aviation Administration. The quantitative design objectives developed and presented are also compared to the calculated risks of previous launches with radioisotope thermal-electric generators such as for the Galileo, Ulysses, and Cassini missions.