ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Christopher Cole, Hugues Bonin
Nuclear Technology | Volume 159 | Number 1 | July 2007 | Pages 1-14
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3852
Articles are hosted by Taylor and Francis Online.
The present work aims at initiating the conceptual design of a small nuclear reactor intended to provide sufficient electrical power (~150 kW) to maintain the "hotel" load of the Victoria-class submarine and extend her operational envelope. The scope of the design is to provide the nuclear reactor system with sufficient inherent safety features as to permit the operation of the nuclear reactor by crews with minimal training for automatic operation. Several constraints provide the framework for carrying out the design work, such as, among others, maintaining the excess reactivity of the reactor at safe values at all times, providing enough fuel and reactivity for meeting operational requirements, and keeping the size of the reactor core and shielding such as to fit within the hull of the existing vessel.The final reactor concept, named the Near Boiling reactor, employs TRISO fuel particles in zirconium-sheathed fuel rods. The reactor is light water moderated and cooled. The core life is specifically designed to coincide with the refit cycle of the Victoria-class submarine. The reactor employs a simple and reliable control and shutdown system that requires little intervention on the part of the submarine's crew. Also, a kinetic model is developed that demonstrates the inherent safety features of the reactor during several accident scenarios. The low steady-state flux level of the reactor during normal operation results in very low negative reactivity after shutdown and eliminates any reactor dead time. The reactor is designed for automatic unattended control and does not require extensive training for its operators.