ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
J. G. B. Saccheri, N. E. Todreas, M. J. Driscoll
Nuclear Technology | Volume 158 | Number 3 | June 2007 | Pages 315-347
Technical Paper | Fission Reactors | doi.org/10.13182/NT07-A3845
Articles are hosted by Taylor and Francis Online.
An 8-yr core design for an epithermal, water-cooled reactor has been developed based upon assessments of nuclear reactor physics, thermal hydraulics, and economics. An integral-vessel configuration is adopted, and self-supporting wire-wrap fuel is employed for the tight lattice of the epithermal core. A streaming path is incorporated in each assembly to ensure a negative void coefficient. A whole-core simulation of the tight core with the stochastic, continuous-energy, transport code MCNP shows a negative void coefficient for the whole cycle during normal operating conditions. Analysis of in-core, flow-induced vibrations indicates that the design has a greater margin to fluid-elastic instability than a standard pressurized water reactor, allowing for higher coolant mass flux and improved safety. Enhanced flow mixing and thermal margins are also achieved, and the VIPRETM code for subchannel thermal-hydraulic analysis has been used to calculate the critical heat flux (CHF) by means of a wire-wrap CHF correlation specifically introduced in the source code. The combination of increased fuel enrichment (~14 wt% 235U, still below the proliferation-resistant limit of 20 wt% 235U), relatively low core-average discharge burnup (70 MWd/kg HM), and very long core life (8 yr) lead to high lifetime-levelized fuel cycle unit cost [in mills/kWh(electric)]. However, both operation and maintenance (O&M) and capital-related expenditures strongly benefit from the higher electric output per unit volume, which yields quite small lifetime-levelized capital and O&M unit costs for the overall plant. Financing requirements are included, and an estimate is provided for the lifetime-levelized total unit cost of the epithermal core, which is ~16% lower than that of a more open-lattice thermal spectrum core, fitting into the same core envelope and with a 4-yr lifetime.