ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Joel A. Kulesza, Roger L. Martz
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 44-54
Technical Paper | doi.org/10.13182/NT15-121
Articles are hosted by Taylor and Francis Online.
This paper extends the verification and validation of MCNP6’s unstructured mesh (UM) features for neutron transport capabilities by comparing code and experimental results for two different sets of experiments. The first set of experiments comprises time-of-flight spectrum measurements of spheres pulsed by 14-MeV neutrons performed by Lawrence Livermore National Laboratory in the early 1970s. The second set of experiments comprises spontaneous fission neutron attenuation measurements in relatively simple geometries with varying shield thicknesses performed by Ueki et al. in the early 1990s. First, traditional constructive solid geometry (CSG) models are analyzed to ensure agreement with experimental values and to form a basis of comparison with UM results. For the pulsed sphere experiments, a series of UM calculations is performed using first-order tetrahedral elements with various levels of mesh refinement. For the Ueki experiments, purely CSG, purely UM, and hybrid CSG/UM calculations are performed using first- and second-order tetrahedral and hexahedral elements. In the purely UM cases, two different meshing algorithms are used to specify the first-order tetrahedral mesh. The pulsed sphere calculated and experimental time-of-flight spectra agree with p-values >0.999 when compared using χ2 goodness-of-fit tests. Furthermore, the UM results show discrepancies with the experimental values comparable to the CSG cases. The Ueki neutron attenuation calculated values using track-length and point detector tallies agree with the experimental values within 1σ with a single exception that agrees well within 2σ. As such, we conclude that the results for the CSG and UM calculations agree among themselves and with the experimental quantities when considering the associated statistical uncertainties.