ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jun Li, Xiao-Bin Tang, Long-Gang Gui, Yun Ge, Ying Chen, Da Chen
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 79-86
Technical Paper | doi.org/10.13182/NT15-72
Articles are hosted by Taylor and Francis Online.
An off-line boron meter in a pressurized water reactor (PWR) nuclear power plant has the disadvantages of lagging data measurements and a long response time. This paper aims to shorten the response time and enhance the measurement accuracy of this type of device. First, the shortcomings of off-line boron meters were analyzed and the serpentuator system was proposed to replace the typical container system. Then, both FLUENT and GEANT simulation tools were used to demonstrate the merits of the serpentuator system. FLUENT was used to simulate the fluid response, while GEANT4 was used to obtain the f(P) curve. The simulation results from FLUENT indicate that the residence time of the fluid in the container system was approximately 9.5 times that in the serpentuator system. The simulation results obtained from GEANT4 manifest that the f(P) curve of the rectangular section was steeper than for the circular section. When the polyethylene was 8 cm thick, the f(P) curve was the steepest. Compared with a serpentuator made of titanium alloy, stainless steel, and brass, a serpentuator made of zirconium alloy or aluminum alloy achieved a steeper f(P) curve. Therefore, the serpentuator system is more applicable for PWRs using an off-line boron letdown through a chemical and volume control system.