ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
Jun Li, Xiao-Bin Tang, Long-Gang Gui, Yun Ge, Ying Chen, Da Chen
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 79-86
Technical Paper | doi.org/10.13182/NT15-72
Articles are hosted by Taylor and Francis Online.
An off-line boron meter in a pressurized water reactor (PWR) nuclear power plant has the disadvantages of lagging data measurements and a long response time. This paper aims to shorten the response time and enhance the measurement accuracy of this type of device. First, the shortcomings of off-line boron meters were analyzed and the serpentuator system was proposed to replace the typical container system. Then, both FLUENT and GEANT simulation tools were used to demonstrate the merits of the serpentuator system. FLUENT was used to simulate the fluid response, while GEANT4 was used to obtain the f(P) curve. The simulation results from FLUENT indicate that the residence time of the fluid in the container system was approximately 9.5 times that in the serpentuator system. The simulation results obtained from GEANT4 manifest that the f(P) curve of the rectangular section was steeper than for the circular section. When the polyethylene was 8 cm thick, the f(P) curve was the steepest. Compared with a serpentuator made of titanium alloy, stainless steel, and brass, a serpentuator made of zirconium alloy or aluminum alloy achieved a steeper f(P) curve. Therefore, the serpentuator system is more applicable for PWRs using an off-line boron letdown through a chemical and volume control system.