ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
G. R. Ansarifar, M. H. Esteki, M. Zaidabadi
Nuclear Technology | Volume 195 | Number 1 | July 2016 | Pages 105-109
Technical Note | doi.org/10.13182/NT15-90
Articles are hosted by Taylor and Francis Online.
Dual-cooled annular nuclear fuel, which is an internally and externally cooled annular fuel, has many advantages for heat transfer. One of the most prominent of these advantages is the ability to harvest more of this type of fuel, which can increase the thermal power of nuclear plants. In this technical note, the core of a VVER-1000 reactor is designed based on the use of internally and externally cooled annular fuels. The thermal-hydraulic parameters of the fuel rods in this type of reactor are analyzed. In addition, the uprate of the thermal power in a VVER-1000 reactor using annular fuels is investigated. For this purpose, first, the proper pitch length of fuel rods in the core is designed under clean and cold conditions using cell and core neutronics calculation codes. Then, thermal-hydraulic calculations are performed for a simulated fuel rod in a hot channel using computational fluid dynamics simulation codes. These calculations are compared with a conventional VVER-1000 reactor that does not use this kind of fuel. One of the most important results of the analysis is that annular fuel shows a sufficient margin for the departure from nucleate boiling and fuel pellet temperature relative to cylindrical fuel. The margin seems viable in accommodating a 129% power uprate.