ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Naphtali M. Mokgalapa, Tushar K. Ghosh, Robert V. Tompson, Sudarshan K. Loyalka
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 353-368
Technical Paper | doi.org/10.13182/NT15-106
Articles are hosted by Taylor and Francis Online.
A methodology is developed to measure the adhesion force and the work of adhesion between aerosols generated in very-high-temperature reactors (VHTRs) and interacting with structural materials. The method uses an interactive system of a silver particle interacting with Haynes 230 (H230) surfaces, compares the measured data with theoretical values, and uses an atomic force microscope in an air environment glove box with ambient temperature of 20.27°C and relative humidity of 34.97%. The adhesion force data are obtained for a silver particle interacting with H230 under four different surface conditions including “as received” and after oxidation for 5, 10, and 15 min, respectively. It was found that the JKR (Johnson-Kendall-Roberts) theory predicted values that were up to three orders of magnitude higher than the experimental data. In contrast, the inclusion of surface roughness from both the particle and H230 samples in the calculations produced results that are one order of magnitude higher than the experimental data. These comparisons provide insight into the significant influence that surface roughness has on adhesion force. A range of values of 0.02 to 0.3 μN was obtained from the adhesion force distributions of measured data that can be used as bounds on forces that can be produced in a silver-H230 interactive system.