ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
M. Hadj-Nacer, T. Manzo, M. T. Ho, I. Graur, M. Greiner
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 387-399
Technical Paper | doi.org/10.13182/NT15-82
Articles are hosted by Taylor and Francis Online.
A two-dimensional computational model of a loaded used nuclear fuel canister filled with dry helium gas was constructed to predict the cladding temperature during vacuum-drying conditions. The model includes distinct regions for the fuel pellets, cladding, and helium within each basket opening, and it calculates the conduction heat transfer within all solid components, heat generation within the fuel pellets, and conduction and surface-to-surface radiation across the gas-filled regions. First, steady-state simulations are performed to determine peak clad temperatures as a function of the fuel heat generation rate, assuming the canister is filled with atmospheric pressure helium. The allowable fuel heat generation rate, which brings the peak clad temperature to its limit, is evaluated. The discrete velocity method is then used to calculate slip-regime rarefied gas conduction across planar and cylindrical helium-filled gaps. These results are used to verify the Lin-Willis solid-gas interface thermal resistance model for a range of thermal accommodation coefficients α. The Lin-Willis model is then implemented at the solid-gas interfaces within the canister model. Finally, canister simulations with helium pressures of 100 and 400 Pa and α = 1, 0.4, and 0.2 are performed to determine how much hotter the fuel cladding is under vacuum-drying conditions compared to atmospheric pressure. For α = 0.4, the fuel heat generation rates that bring the clad temperature to its allowed limit for helium pressures of 400 and 100 Pa are reduced by 10% and 25%, respectively, compared to atmospheric pressure conditions. Transient simulations show that the cladding reaches its steady-state temperatures ~20 to 30 h after water is removed from the canister.