ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
M. Hadj-Nacer, T. Manzo, M. T. Ho, I. Graur, M. Greiner
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 387-399
Technical Paper | doi.org/10.13182/NT15-82
Articles are hosted by Taylor and Francis Online.
A two-dimensional computational model of a loaded used nuclear fuel canister filled with dry helium gas was constructed to predict the cladding temperature during vacuum-drying conditions. The model includes distinct regions for the fuel pellets, cladding, and helium within each basket opening, and it calculates the conduction heat transfer within all solid components, heat generation within the fuel pellets, and conduction and surface-to-surface radiation across the gas-filled regions. First, steady-state simulations are performed to determine peak clad temperatures as a function of the fuel heat generation rate, assuming the canister is filled with atmospheric pressure helium. The allowable fuel heat generation rate, which brings the peak clad temperature to its limit, is evaluated. The discrete velocity method is then used to calculate slip-regime rarefied gas conduction across planar and cylindrical helium-filled gaps. These results are used to verify the Lin-Willis solid-gas interface thermal resistance model for a range of thermal accommodation coefficients α. The Lin-Willis model is then implemented at the solid-gas interfaces within the canister model. Finally, canister simulations with helium pressures of 100 and 400 Pa and α = 1, 0.4, and 0.2 are performed to determine how much hotter the fuel cladding is under vacuum-drying conditions compared to atmospheric pressure. For α = 0.4, the fuel heat generation rates that bring the clad temperature to its allowed limit for helium pressures of 400 and 100 Pa are reduced by 10% and 25%, respectively, compared to atmospheric pressure conditions. Transient simulations show that the cladding reaches its steady-state temperatures ~20 to 30 h after water is removed from the canister.