ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Hadj-Nacer, T. Manzo, M. T. Ho, I. Graur, M. Greiner
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 387-399
Technical Paper | doi.org/10.13182/NT15-82
Articles are hosted by Taylor and Francis Online.
A two-dimensional computational model of a loaded used nuclear fuel canister filled with dry helium gas was constructed to predict the cladding temperature during vacuum-drying conditions. The model includes distinct regions for the fuel pellets, cladding, and helium within each basket opening, and it calculates the conduction heat transfer within all solid components, heat generation within the fuel pellets, and conduction and surface-to-surface radiation across the gas-filled regions. First, steady-state simulations are performed to determine peak clad temperatures as a function of the fuel heat generation rate, assuming the canister is filled with atmospheric pressure helium. The allowable fuel heat generation rate, which brings the peak clad temperature to its limit, is evaluated. The discrete velocity method is then used to calculate slip-regime rarefied gas conduction across planar and cylindrical helium-filled gaps. These results are used to verify the Lin-Willis solid-gas interface thermal resistance model for a range of thermal accommodation coefficients α. The Lin-Willis model is then implemented at the solid-gas interfaces within the canister model. Finally, canister simulations with helium pressures of 100 and 400 Pa and α = 1, 0.4, and 0.2 are performed to determine how much hotter the fuel cladding is under vacuum-drying conditions compared to atmospheric pressure. For α = 0.4, the fuel heat generation rates that bring the clad temperature to its allowed limit for helium pressures of 400 and 100 Pa are reduced by 10% and 25%, respectively, compared to atmospheric pressure conditions. Transient simulations show that the cladding reaches its steady-state temperatures ~20 to 30 h after water is removed from the canister.