ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
C. W. Forsberg, J. D. Stempien, M. J. Minck, R. G. Ballinger
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 295-313
Technical Paper | doi.org/10.13182/NT15-87
Articles are hosted by Taylor and Francis Online.
Fluoride salt–cooled High-temperature Reactors (FHRs) are a new type of power reactor that delivers heat to the power cycle between 600°C and 700°C. The FHR uses High-Temperature Gas-cooled Reactor (HTGR) graphite-matrix coated-particle fuel with failure temperatures of 1650°C. The FHR coolants are clean fluoride salts that have melting points above 350°C and boiling points above 1400°C. This combination may enable the design of a large FHR that will not have significant fuel failure and thus radionuclide releases to the environment even in a beyond-design-basis accident (BDBA) that include failure of all cooling systems, the vessel, and containment systems. A first effort has been undertaken to understand FHR BDBAs and develop an FHR BDBA system to prevent major fuel failure if an accident occurs in a large FHR.
Four design features limit BDBA fuel temperatures to lower than fuel failure temperatures. First, there is a large temperature drop to transfer decay heat from the fuel to the environment in a BDBA. Second, the large temperature difference between normal operating temperatures and fuel failure temperatures allows the use of increasing temperatures in an accident to degrade the insulation system and other barriers that prevent efficient transfer of decay heat from the reactor core to the environment in an accident. Third, the silo around the reactor vessel contains a BDBA salt that in an accident heats up, melts, and partly floods the silo to improve heat transfer from fuel to the environment. Fourth, the fuel and coolant retain fission products and actinides at high temperatures.