ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Bipartisan commission report urges national fusion strategy
In the report Fusion Forward: Powering America’s Future issued earlier this month by the Special Competitive Studies Project’s (SCSP) Commission on the Scaling of Fusion Energy, it warns that the United States is on the verge of losing the fusion power race to China.
Noting that China has invested at least $6.5 billion in its fusion enterprise since 2023, almost three times the funding received by the U.S. Department of Energy’s fusion program over the same period, the commission report urges the U.S. government to prioritize the rapid commercialization of fusion energy to secure U.S. national security and restore American energy leadership.
SCSP is a nonpartisan, nonprofit initiative making recommendations to strengthen America’s long-term competitiveness in emerging technologies. Launched in fall 2024, the 13-member commission is led by Sens. Maria Cantwell (D., Wash.) and Jim Risch (R., Idaho), along with SCSP president and commission co-chair Ylli Bajraktari.
C. W. Forsberg, J. D. Stempien, M. J. Minck, R. G. Ballinger
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 295-313
Technical Paper | doi.org/10.13182/NT15-87
Articles are hosted by Taylor and Francis Online.
Fluoride salt–cooled High-temperature Reactors (FHRs) are a new type of power reactor that delivers heat to the power cycle between 600°C and 700°C. The FHR uses High-Temperature Gas-cooled Reactor (HTGR) graphite-matrix coated-particle fuel with failure temperatures of 1650°C. The FHR coolants are clean fluoride salts that have melting points above 350°C and boiling points above 1400°C. This combination may enable the design of a large FHR that will not have significant fuel failure and thus radionuclide releases to the environment even in a beyond-design-basis accident (BDBA) that include failure of all cooling systems, the vessel, and containment systems. A first effort has been undertaken to understand FHR BDBAs and develop an FHR BDBA system to prevent major fuel failure if an accident occurs in a large FHR.
Four design features limit BDBA fuel temperatures to lower than fuel failure temperatures. First, there is a large temperature drop to transfer decay heat from the fuel to the environment in a BDBA. Second, the large temperature difference between normal operating temperatures and fuel failure temperatures allows the use of increasing temperatures in an accident to degrade the insulation system and other barriers that prevent efficient transfer of decay heat from the reactor core to the environment in an accident. Third, the silo around the reactor vessel contains a BDBA salt that in an accident heats up, melts, and partly floods the silo to improve heat transfer from fuel to the environment. Fourth, the fuel and coolant retain fission products and actinides at high temperatures.