ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Sang Ji Kim, Pham Nhu Viet Ha, Jae Yong Lim
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 340-352
Technical Paper | doi.org/10.13182/NT15-53
Articles are hosted by Taylor and Francis Online.
An advanced sodium-cooled fast reactor concept has been developed in Korea for transuranics (TRU) transmutation with an electricity output of 600 MW(electric) (called the KALIMER-600 TRU burner). The core design philosophy is primarily based on passive safety mechanisms to meet the Generation IV technology goals. Accordingly, metal fuel has been adopted to enhance its inherent passive safety characteristics. The charged fuel in a ternary metal alloy (U-TRU-Zr) consists of self-recycled TRU and TRU recovered from the spent nuclear fuels of current light water reactors through a pyro-metallurgical process, which is assumed to carry over 5% of the inventory of rare earth (RE) elements. It has been recognized that an additional amount of RE in the fuel would decrease the material attractiveness of the charged fuel with respect to proliferation resistance and physical protection (PR&PP). However, this may raise concerns because most of the reactor physics parameters will tend to negatively affect the passive safety features encoded in the original core concept. Thus, this study investigates the impact of the RE recovery fraction on the core physics performance and important safety parameters such as Doppler coefficients and sodium void reactivity. The results are expected to help provide guidance regarding the development of limiting conditions for RE contents to recycling technology flow sheet developers and ternary metal fuel developers, and to provide insight into optimizing the core passive safety characteristics under accident conditions should a significant amount of RE be needed to enhance PR&PP.