ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Dağıstan Şahin, Kenan Ünlü, Kostadin Ivanov
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 324-339
Technical Paper | doi.org/10.13182/NT15-110
Articles are hosted by Taylor and Francis Online.
The main goal of this study is to verify the accuracy of burnup-coupled neutronic calculations when employing the Monte Carlo Utility for Reactor Evolutions (MURE) and MCNP5 codes for modeling TRIGA-type reactors, in this case the Penn State Breazeale Reactor (PSBR) core. Research and educational requirements mainly direct the PSBR operating schedule. With such operating schedules, one particular area of concern, specifically relating to nuclear analytical applications, is time-dependent changes in the neutronic characteristics of the reactor, specifically within the irradiation positions. Particular concern exists among scientists performing neutron activation analysis measurements as to whether continuous variations in reactor operations would cause significant fluctuations in the neutronic characterization parameters of the irradiation positions. A secondary objective of this study is to analyze fluctuations in the neutronic characterization parameters and their dependence on various core conditions as examined by detailed burnup-coupled neutronic simulations. In this study, a burnup-coupled neutronic simulation model of the PSBR is developed using the MURE and MCNP5 codes. The simulation results are verified by a series of experiments including measurements of the core excess reactivity starting from the first core loading in 1965 to 2012, control rod worth, fission product buildup, temperature-dependent reactivity loss, integral control rod worth curves, individual fuel element worth, and neutron flux. Local neutronic calculations of the simulation are confirmed by measuring neutronic characterization parameters for one of the irradiation positions within the PSBR core, namely, dry irradiation tube 1. Analyzing time-dependent data predicted by the simulation, the neutron temperature and the measure of the nonideal epithermal neutron flux distribution are found to be reasonably static. Conversely, the thermal-to-epithermal neutron flux ratio and spectral index are found to be relatively responsive to alterations in the core.