ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
M. Yousif Alhaj, Alya Badawi, Hanaa H. Abou-Gabal, Nader M. A. Mohamed
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 314-323
Technical Paper | doi.org/10.13182/NT15-78
Articles are hosted by Taylor and Francis Online.
This research focuses on the utilization of thorium-plutonium fuel in pressurized water reactors (PWRs). The reference PWR selected in this research was the Westinghouse AP1000. Thorium-plutonium mixed-oxide (MOX) fuel assemblies partially replaced the uranium oxide fuel assemblies to reduce uranium demand. The cases studied contained 36, 48, 60, 72, and 84 thorium-plutonium MOX fuel assemblies, with the rest of the 193 fuel assemblies loaded with UO2 fuel. The core cycle length, the amount of plutonium incinerated, the amount of generated 233U in the spent fuel, and the conversion ratios were determined using MCNP6. For the different cases, safety parameters such as the power peaking factor and delayed neutron fraction (βeff) were evaluated. The study showed that using thorium-plutonium MOX can achieve good peaking power factors with delayed neutron fractions within the safety limits. Also a conversion factor of about 10% was achieved.