ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Xia Wen, Fuzhi Li, Xuan Zhao
Nuclear Technology | Volume 194 | Number 3 | June 2016 | Pages 379-386
Technical Paper | doi.org/10.13182/NT15-74
Articles are hosted by Taylor and Francis Online.
The rapid development of nuclear power plants (NPPs) in China has caused increasing attention to be paid to the treatment of low-level radioactive wastewaters (LLRWs). One possibility is the application of vacuum membrane distillation (VMD). In this study, a commercial hydrophobic microporous polypropylene membrane was investigated with respect to nuclide decontamination and permeate flux performance in the VMD process. The results demonstrate that vacuum pressure has the most obvious influence on permeate flux, followed by feed temperature and feed velocity. Despite the influence of operational parameters, effective nuclide filtering can be achieved with average decontamination factor (DF) values consistently higher than 1700. The salt concentration in the feed solution decreases the permeate flux and nuclide filtering. However, the VMD process still offers high average DF values of 6000 for Cs(I), 3700 for Sr(II), and 8300 for Co(II), even when the feed salt concentration reaches 80 g L−1. After operation at a high salt concentration, there is no obvious variation in the chemical composition on the membrane surface based on the attenuated total reflectance–Fourier transform infrared spectra. A brief comparison shows that the process integrating reverse osmosis and VMD is a promising method for treating LLRWs and minimizing radioactive waste in NPPs.