ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Nathan Andrews, Koroush Shirvan, Edward E. Pilat, Mujid S. Kazimi
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 204-216
Technical Paper | doi.org/10.13182/NT15-41
Articles are hosted by Taylor and Francis Online.
A comparison of burning weapons-grade plutonium in a standard pressurized water reactor (PWR) using thoria or urania as a fuel matrix has been performed. Two cladding options were considered: a silicon carbide (SiC) matrix of 0.76-mm thickness and Zircaloy of 0.57-mm thickness. As expected, in terms of percentage and total plutonium mass burned, there was a large benefit in using thoria as a matrix compared to urania. Additionally, a smaller amount of plutonium is required in a core when SiC is the cladding because of lower neutron absorption in SiC. The thorium system was also better from a plutonium-burning viewpoint. It resulted in less weapons-useable U and Pu at discharge and more burned over an assembly’s lifetime. At discharge, the fuel was shown to have lower multiples of minimum amounts needed for weapons, even when 233U breeding was taken into account. Thoria-plutonia fuel has different kinetic characteristics from urania-plutonia or enriched urania fuel, so a limited safety comparison of such fuels was made for two reactivity insertion accidents: (1) the highest worth rod ejection and (2) main-steam-line break (MSLB). The accident analyses were performed at both beginning and end of cycle. While the control rod worths are higher in the simulated thoria-plutonia and urania-plutonia cores than in conventional urania-loaded cores, the enthalpy added during the accident was lower than current safety limits for conventional cores. During the MSLB accident, all cases showed acceptable behavior, indicating that the less negative moderator temperature coefficients of thoria-plutonia and urania-plutonia fuel were not limiting.