ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Allen G. Croff, Emory D. Collins, G. D. Del Cul, R. G. Wymer, Alan M. Krichinsky, B. B. Spencer, Brad D. Patton
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 252-270
Technical Paper | doi.org/10.13182/NT15-59
Articles are hosted by Taylor and Francis Online.
Thorium-based nuclear fuel cycles have received renewed attention in both research and public circles since about the year 2000. Much of the attention has been focused on nuclear fission energy production that utilizes thorium as a fertile element for producing fissionable 233U for recycle in thermal reactors, fast reactors, or externally driven systems. Lesser attention has been paid to other fuel cycle operations that are necessary for implementation of a sustainable thorium-based fuel cycle such as reprocessing and fabrication of recycle fuels containing 233U.
This paper first identifies recent literature that has resulted from the renewed interest in thorium-based fuel cycles. Next, differences in the radiation characteristics of nuclear materials associated with thorium-based and uranium-based fuels are discussed, and the generic implications of the differences to nuclear material processing are identified. Then, experience at Oak Ridge National Laboratory concerning processing of thorium and 233U is described in terms of the processing projects and campaigns undertaken and the facilities in which the processing was implemented. This experience then provides the basis for a generalized discussion of processing nuclear materials associated with thorium-based fuel cycles as compared to uranium-based fuel cycles.
This comparative discussion focuses on key out-of-reactor fuel cycle operations: reprocessing of metal-clad oxide and graphite-matrix oxide used nuclear fuels (UNFs) including head-end processing (shearing and dissolution), solvent extraction, product conversion, fuel fabrication, and waste management. It is concluded that the recycle of thorium-based UNF constituents (233U and thorium) is more technically challenging than the recycle of uranium-based UNF constituents (plutonium and uranium) based on the radiation, chemical, and physical characteristics of nuclear materials in thorium-based fuel cycles as compared to uranium-based fuel cycles.