ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Jess C. Gehin, Jeffrey J. Powers
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 152-161
Technical Paper | doi.org/10.13182/NT15-124
Articles are hosted by Taylor and Francis Online.
Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride based or chloride based, as either a coolant with a solid fuel (such as fluoride salt–cooled high-temperature reactors) or as a combined coolant and fuel with the fuel dissolved in a carrier salt. For liquid-fueled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as for introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with the online removal of parasitic absorbers enable the design of a thermal-spectrum breeder reactor. However, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at Oak Ridge National Laboratory in the 1950s and 1960s: the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR) with multiple configurations that could breed additional fissile material or maintain self-sustaining operation and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation resistance. MSRs have been selected as one of the Generation IV systems, and development activity has been seen in fast-spectrum MSRs, waste-burning MSRs, and MSRs fueled with low-enriched uranium as well as in more traditional thorium fuel cycle–based MSRs. This paper provides a historical background of MSR R&D efforts, surveys and summarizes many of the recent developments, and provides analysis comparing thorium-based MSRs by way of example.