ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Sourena Golesorkhi, Blair P. Bromley, Matthew H. Kaye
Nuclear Technology | Volume 194 | Number 2 | May 2016 | Pages 178-191
Technical Paper | doi.org/10.13182/NT15-30
Articles are hosted by Taylor and Francis Online.
The pressure-tube heavy water reactor (PT-HWR) has excellent potential as an operational technology to exploit the use of thorium. Reactor core configurations of an existing PT-HWR design with thorium-based fuels were simulated using the DRAGON/DONJON reactor physics code suite. The ultimate goal of this work was to achieve a self-sufficient equilibrium thorium cycle with a fissile inventory ratio (FIR) greater than unity (FIR ≥ 1.0) by altering the fueling configuration and leaving the reactor model relatively unchanged from the existing 700-MW(electric)–class PT-HWR design. A further constraint was the license requirements limiting the maximum channel and bundle powers of existing PT-HWRs. To improve the breeding potential in the PT-HWR, heterogeneous seed and blanket core configurations were selected for assessment as opposed to using a homogenous core configuration with one single type of fuel. A number of bundle design concepts were modeled with DRAGON: A 24-element variant of the internally cooled annular fuel bundle was chosen for the seed fuel, and a conventional 28-element bundle was used for the blanket fuel. Two annular heterogeneous core configurations were considered: inner seed outer blanket (ISOB) and inner blanket outer seed (IBOS). Time-average and instantaneous power calculations were performed using DONJON. It was found that while the ISOB configuration could attain net breeding (FIR ≥ 1.0), the maximum channel and bundle powers exceeded the defined limits. When the reactor was derated to reduce these powers, the fuel cycle fell just below net breeding, although it did have a very high FIR. The IBOS configuration could meet the power limits without derating but was not self-sufficient. Despite not being net breeders, the FIR in both cases was very close to unity (0.986 to 0.995). Work is continuing to further optimize the fuel bundle concepts and core configurations and to achieve net breeding. Overall, the PT-HWR shows great promise for the current-generation implementation of the thorium fuel cycle.