ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Rachel A. Shapiro, Massimiliano Fratoni
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 15-27
Technical Paper | doi.org/10.13182/NT15-97
Articles are hosted by Taylor and Francis Online.
Fully ceramic microencapsulated (FCM) fuel consists of TRISO (tristructural-isotropic) fuel particles embedded in a ceramic matrix (SiC) to form fuel pellets and rods and offers improved fission product retention and lower operating temperature with expected superior performance in normal and off-normal conditions compared to conventional fuel. When coupled with SiC cladding, FCM fuel eliminates zirconium altogether and is expected to drastically reduce hydrogen generation during a beyond-design-basis accident. In order to be deployed in current or future pressurized water reactors (PWRs), FCM fuel must meet or exceed the neutronic performance of conventional fuel. Limited by low heavy metal loading, an FCM fuel assembly requires increased enrichment and large fuel rods to match the cycle length of a conventional fuel assembly.
This study investigated the core design, neutronics, and thermal hydraulics of a PWR loaded with FCM fuel and sought to optimize the assembly design to minimize the enrichment required to reach fuel performance similar to that of conventional fuel. It was found that the implementation of FCM fuel in a 17 × 17 assembly requires close to 20% enrichment and large fuel rods. Such design performs comparably to conventional fuel (4.5% enrichment) in terms of cycle length, reactivity coefficients, intra-assembly power peaking factor, burnable poison penalty, and control rod worth but requires an increase of pumping power. A parametric analysis spanned a large design space varying fuel outer diameter and pitch-to-diameter ratio (P/D) and downselected two alternate assembly designs: 11 × 11 (1.65-cm outer diameter and 1.18 P/D) and 9 × 9 (2.12-cm outer diameter and 1.12 P/D). These designs meet the cycle length requirement with 18.6% and 16.2% enrichments, respectively, but feature a smaller minimum departure from nucleate boiling ratio (MDNBR) compared to a reference assembly. It was estimated that a slight increase in rod outer diameter increases MDNBR to the desired level and implies a pressure drop increase of 10%.