ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
E. C. Gomes, J. P. Duarte, P. F. Frutuoso e Melo
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 73-96
Technical Paper | doi.org/10.13182/NT15-29
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to highlight and model the most important steps in cases of human failure in radiotherapy (teletherapy and brachytherapy) procedures by identifying possible modes of human failure. An approach via Bayesian networks (BNs) to model and highlight the most relevant steps of teletherapy and brachytherapy was used. Finally, as a technique for the quantification of BNs, an expert opinion elicitation procedure was used since no database is available.
In the case of teletherapy, observing only the stages of prescription, planning, and execution, it appears that the step that most increases the success probability, after consideration of preventive measures, is execution. This is in agreement with cases of errors and accidents reported in the literature, considering that more than 50% of these cases are related to the implementation phase. Related to brachytherapy, the most relevant factor was the use of equipment, whose increase in success probability after consideration of preventive measures was 17.2%, demonstrating the importance of a continuous specific training.
It is important to mention that the purpose of this study was not to calculate the risk associated with radiotherapy treatments but rather to check how accident prevention influences the success procedure and observe the relationship among all stages. An uncertainty analysis was performed of the expert data by considering that data scattering followed a normal or a lognormal distribution, due to data ranges considered. This analysis revealed that data scattering was better represented by normal distributions, and the results are consistent with pointwise estimates initially made.