ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
E. C. Gomes, J. P. Duarte, P. F. Frutuoso e Melo
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 73-96
Technical Paper | doi.org/10.13182/NT15-29
Articles are hosted by Taylor and Francis Online.
The purpose of this paper is to highlight and model the most important steps in cases of human failure in radiotherapy (teletherapy and brachytherapy) procedures by identifying possible modes of human failure. An approach via Bayesian networks (BNs) to model and highlight the most relevant steps of teletherapy and brachytherapy was used. Finally, as a technique for the quantification of BNs, an expert opinion elicitation procedure was used since no database is available.
In the case of teletherapy, observing only the stages of prescription, planning, and execution, it appears that the step that most increases the success probability, after consideration of preventive measures, is execution. This is in agreement with cases of errors and accidents reported in the literature, considering that more than 50% of these cases are related to the implementation phase. Related to brachytherapy, the most relevant factor was the use of equipment, whose increase in success probability after consideration of preventive measures was 17.2%, demonstrating the importance of a continuous specific training.
It is important to mention that the purpose of this study was not to calculate the risk associated with radiotherapy treatments but rather to check how accident prevention influences the success procedure and observe the relationship among all stages. An uncertainty analysis was performed of the expert data by considering that data scattering followed a normal or a lognormal distribution, due to data ranges considered. This analysis revealed that data scattering was better represented by normal distributions, and the results are consistent with pointwise estimates initially made.