ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
X-energy, Dow apply to build an advanced reactor project in Texas
Dow and X-energy announced today that they have submitted a construction permit application to the Nuclear Regulatory Commission for a proposed advanced nuclear project in Seadrift, Texas. The project could begin construction later this decade, but only if Dow confirms “the ability to deliver the project while achieving its financial return targets.”
Antti Räty, Petri Kotiluoto
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 28-38
Technical Paper | doi.org/10.13182/NT15-86
Articles are hosted by Taylor and Francis Online.
The objective of the study has been to estimate the residual activity in the decommissioning waste of the TRIGA Mark II–type research reactor FiR 1 in Finland. Neutron flux distributions were calculated with the Monte Carlo code MCNP. These were used in the ORIGEN-S point-depletion code to calculate the neutron-induced activity of materials at different time points by modeling irradiation history and radioactive decay. Knowledge of the radioactive inventory of irradiated materials is important in the planning of the decommissioning activities and is essential for predicting the radiological impact to personnel and the environment. Decommissioning waste consists mainly of ordinary concrete, aluminum, steel, and graphite parts. Results include uncertainties due to assumptions on material compositions and lack of some detailed operational history data. Comparison to activity inventory estimates of two other decommissioned research reactors is also presented.