ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
V. Dykin, I. Pázsit
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 404-415
Technical Paper | doi.org/10.13182/NT15-71
Articles are hosted by Taylor and Francis Online.
The derivation of the point-kinetic component of the neutron noise in two-group diffusion theory in molten salt reactors (MSRs), based on different techniques, is discussed. First, the point-kinetic component is calculated by projecting the corresponding full space-frequency–dependent solution onto the static adjoint. Then, following the standard procedure in reactor physics, the point-kinetic solution is determined by solving the linearized point-kinetic equations. Both results are thereafter analyzed and compared quantitatively. Such a comparison clearly indicates that the solution obtained by the conventional derivation, i.e., from the point-kinetic equations, significantly differs from the exact one and is not able to reproduce certain features of the latter. Similar discrepancies between the two methods were also pointed out and confirmed earlier in one-group MSR calculations.