ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Seyed Mohsen Hoseyni, Mohammad Pourgol-Mohammad
Nuclear Technology | Volume 193 | Number 3 | March 2016 | Pages 341-363
Technical Paper | doi.org/10.13182/NT15-47
Articles are hosted by Taylor and Francis Online.
The influence of model uncertainty is most pronounced in areas of limited knowledge and large uncertainties like severe accident (SA) calculations. Lack of a systematic methodology for this purpose makes this assessment difficult. This paper describes the treatment of model uncertainty in SA analysis for nuclear power plants, which is an area that has had limited past research. This paper aims at a systematic subject assessment. By review of available approaches, a methodology is structured to deal with alternative modeling options in SA code structure. The proposed methodology comprises three phases: the probability of each model is estimated (phase 1), the input uncertainty is quantified (phase 2), and the Bayesian model averaging technique is utilized to integrate the calculations of alternative models into the SA code (phase 3). Through this process, the degree of belief is quantified for the performance of alternative code models. The methodology evaluates available information and data from experiments and code predictions. The application of the proposed methodology is demonstrated on fission product release models for the LP-FP-2 SA experiment of the LOFT (Loss-of-Fluid Test) facility.