ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Xianfei Wen, Dante Nakazawa, Mat Kastner, Jason Pavlick, Haori Yang
Nuclear Technology | Volume 194 | Number 1 | April 2016 | Pages 117-125
Technical Note | doi.org/10.13182/NT15-113
Articles are hosted by Taylor and Francis Online.
Pulsed photonuclear techniques are commonly used in homeland security and nuclear safeguards applications to achieve enhanced detection sensitivity. For example, photoneutrons generated by a pulse-mode linear accelerator (linac) are commonly utilized to produce characteristic capture gamma rays for the detection of nitrogen-rich explosives. Recently, in an effort to develop innovative systems with increased sensitivity to detect diversion and prevent misuse, the authors proposed to assay used nuclear fuel for its plutonium content using a photofission technique, in support of nuclear material management in the U.S. fuel cycle.
Passive spectroscopy measurements in the presence of intense background from fission products could be very difficult. Focusing on high-energy delayed gamma rays emitted by short-lived products from photofission presents a much more promising solution. However, as discovered in this study, a commercially available standard high-purity germanium (HPGe) preamplifier can be easily saturated for tens of milliseconds after each linac pulse. This greatly reduces the live time of the system especially when the linac repetition rate is high. On the other hand, although significantly reduced by increasing the lower-level threshold, the input count rate can still easily reach 106 cps (counts per second). Developing a gamma spectroscopy system that can handle such a high count rate has been a major challenge.
In this work, a commercial HPGe preamplifier was modified to reduce the saturation time and tail time to improve its high-rate performance in a pulsed photonuclear environment. Results of the modifications were evaluated via both simulations and experiments and proven to be effective without significant degradation of energy resolution. The field-effect transistor (FET) and feedback components were first moved to the warm side to enable the modifications. The saturation time of the preamplifier following a linac pulse was greatly reduced by decreasing the value of the feedback resistor. The effect of reducing the tail time of the output signal was also studied. A traditional trapezoidal shaping approach was then employed to study the impact of the modifications on energy resolution.