ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
James E. O'Brien, Carl M. Stoots, J. Stephen Herring, Joseph J. Hartvigsen
Nuclear Technology | Volume 158 | Number 2 | May 2007 | Pages 118-131
Technical Paper | Nuclear Reactor Thermal Hydraulics | doi.org/10.13182/NT07-A3830
Articles are hosted by Taylor and Francis Online.
An experimental program is under way to assess the performance of solid-oxide cells operating in the steam electrolysis mode for hydrogen production in a temperature range from 800 to 900°C. This temperature range is consistent with the planned coolant outlet temperature range of advanced nuclear reactors. Results were obtained from two multiple-cell planar electrolysis stacks with an active area of 64 cm2 per cell. The electrolysis cells are electrolyte-supported, with scandia-stabilized zirconia electrolytes (~140 m thick), nickel-cermet steam/hydrogen electrodes, and manganite oxygen-side electrodes. The metallic interconnect plates are fabricated from ferritic stainless steel. The experiments were performed in a range of steam inlet mole fractions (0.1 to 0.6), gas flow rates (1000 to 4000 standard cubic centimeters per minute), and current densities (0 to 0.38 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. Cell operating potentials and cell current were varied using a programmable power supply. Values of area-specific resistance and stack internal temperatures are presented as a function of current density. Initial stack-average area-specific resistance values <1.5 cm2 were observed. Hydrogen production rates in excess of 200 normal liters per hour (NL/h) were demonstrated. Internal stack temperature measurements revealed a net cooling effect for operating voltages between the open-cell potential and the thermal neutral voltage. These temperature measurements agreed very favorably with computational fluid dynamics predictions. A continuous long-duration test was run for 1000 h with a mean hydrogen production rate of 177 NL/h. Some performance degradation was noted during the long test. Stack performance is shown to be dependent on inlet steam flow rate.